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Abstract

The time-domain response of a prestressed Euler–Bernoulli beam under external excitation is studied
based on modal superposition. The prestress force is then identified in the time domain by a system
identification approach and Tikhonov regularization technique is used to provide bounds to the ill-
conditioned results in the identified problem. Both measured displacements and strains are used. The noise
effect is improved using the orthogonal polynomial function, and cases with either sinusoidal or impulsive
excitations are illustrated to give very good results from the lower three measured modes and data obtained
from three measurement points. Work in this paper demonstrates the feasibility of indirectly identifying the
prestress force in a beam.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Many developed countries are facing the problem of aging infrastructure and a limited budget
on their maintenance. A quick and non-destructive test method to assess the condition of existing
structures is required for their maintenance and repair. Many of the physical parameters of the
structure, such as the Young’s modulus and the second moment of area of the cross-section, are
candidates in the set of variable to define the condition of the structure. Prestressing force has
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

r mass density of the beam material
A cross-sectional area
h0 the height of the beam
b the width of the beam
c the viscous damping of the beam
PðtÞ the external exciting force
E Young’s modulus
[I] unity matrix
I0 the second moment of area of the beam

cross-section

T prestress force
yðx; tÞ transverse displacement of the beam
Y iðxÞ the ith mode shape of the beam
qiðtÞ modal coordinate
½M� modal mass matrix
½C� modal damping matrix
½K � modal stiffness matrix
½K 0� modal stiffness reduction due to the

prestress force
N number of modes used
Nf number of the polynomial terms used
l regularization parameter
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been used widely with long span structure, and it is the most important factor to describe the load-
carrying capacity of the structure.
This paper addresses the problem of prestress force identification in a bridge deck modeled as a

simply supported beam. The bridge deck may lose some of its prestress force due to creep and
relaxation from long period of service under design or overloaded vehicles. A large reduction of
the prestress force from the design value could lead to serviceability and safety problems.
Therefore assessment on the magnitude of the prestress force or the loss of prestress force in the
bridge deck is important for its load-carrying capacity assessment. However existing prestress
force cannot be estimated directly unless the bridge deck has been instrumented at the time of
construction. Several researchers [1] tried to predict the loss of prestress based on a damage index
derived from the derivatives of mode shapes without success. Others [2] studied the behaviour of a
beam with unbonded tendons, and a formula was proposed for the prediction of the modal
frequency for a given prestress force with laboratory and field test verifications. Saiidi et al. [3]
reported a study with modal frequency due to the prestress force with laboratory test results.
No work has been reported on the effect of prestress on the dynamic responses of a beam and

on any successful method to identify directly or indirectly the prestress force of a beam. Saiidi et
al. [3] showed that the sensitivity of the modal frequency to prestress decreases with higher
vibration modes, and the prestress force affects the first few lower modes more significantly than
the higher ones. Consequently the prestress force would be difficult to identify from the modal
frequencies. Also Abraham et al. [1] reported that the mode shapes remain almost identical with
different prestress force in the beam, and it will also be difficult to identify the force from the
measured mode shapes.
The dynamic response of a prestress beam is studied in this paper based on modal

superposition, and the contribution from the higher modes is found less than that from lower
modes as with a non-prestressed beam. An inverse problem to identify the prestress force is then
formulated taking only the prestress force and both the prestress force and the flexural rigidity of
the beam as variables in the identification with external excitation. The damped least-squares
method with regularisation is used for the solution. Orthogonal polynomial function is used to
approximate the measured strain responses to remove the measurement noise effect, and the
effectiveness of using an impulsive force in the identification is also illustrated. The work
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presented in this paper indicates that the identification of prestress force with normal modal
testing technique is feasible even with noisy data.
2. Forward problem

2.1. Equation of motion

The bridge deck is modeled as a single-span simply supported prestressed uniform
Euler–Bernoulli beam subjected to an external excitation force PðtÞ acting at a distance xp from
the left support as shown in Fig. 1. The equation of motion of the beam can be written as

rA
q2yðx; tÞ

qt2
þ c

qyðx; tÞ

qt
þ T

q2yðx; tÞ
qx2

þ
q2

qx2
EI0

q2yðx; tÞ
qx2

¼ PðtÞdðx � xpÞ, (1)

where r is the mass density of the beam, A is the cross-sectional area, c is the damping of the
beam, E is the Young’s modulus of material, I0 ¼ bh30=12 is the moment of inertia of the beam
cross-section, b is the width of the beam, h0 is the height of the beam, T is the externally applied
compressive axial force (note that compressive is positive and tension is negative), yðx; tÞ is the
transverse displacement function of the beam, and dðxÞ is the Dirac delta function.
The prestress is assumed unbonded with the concrete, and it is constant along the whole beam.

The tendon eccentricity gives rise to a static moment effect on the beam section, and it has not any
relationship with its dynamic properties. It is therefore not represented in Eq. (1).
2.2. Modal responses

On the basis of modal superposition, the dynamic deflection yðx; tÞ of the beam can be
expressed as

yðx; tÞ ¼
X1
i¼1

Y iðxÞqiðtÞ, (2)

where Y iðxÞ is the mode shape function of the ith mode and qiðtÞ is the ith modal amplitude.
Fig. 1. Prestressed beam model.
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Substituting Eq. (2) into Eq. (1), multiplying each term by Y jðxÞ, integrating with respect to x

between 0 and L and applying the modal orthogonality conditions, we have

€qiðtÞ þ 2xiōi _qðtÞ þ ō2i qiðtÞ ¼
1

mi

f iðtÞ, (3)

where ōi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEI0=ðrAÞðip=LÞ4 � T=ðrAÞðip=LÞ2Þ

q
, xi and mi are the reduced modal frequency, the

damping ratio and the modal mass of the ith mode; f iðtÞ ¼ PðtÞY iðxpÞ is the modal force. The

modal shape functions of the prestressed beam resemble those of a beam without prestress force

[1] and it is written in the normalized form as Y iðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðrAL

p
Þ sinðip=LÞx for a simply

supported beam, and

mi ¼

Z L

0

rAY 2
i ðxÞdx ¼ 1. (4)

Writing Eq. (3) in matrix form

½I �f €QðtÞg þ ½C�f _QðtÞg þ ð½K � � ½K 0�ÞfQðtÞg ¼ fF ðtÞg, (5)

where

½C� ¼ diagð2xioiÞ; ½K � ¼ diag
EI0

rA

ip
L

� �4 !
; ½K 0� ¼ diag

T

rA

ip
L

� �2 !
,

fQðtÞg ¼ fq1ðtÞ; q2ðtÞ; . . . ; qnðtÞg
T; fF ðtÞg ¼ ff 1ðtÞ; f 2ðtÞ; . . . ; f nðtÞg

T

and ½I � is the unity matrix.
We can determine ōi for TpTcr where Tcr ¼ p2EI0=L2 is the critical buckling load of the

beam. The modal response is computed in the time domain numerically using the Newmark’s
integration scheme [4].
3. Inverse problem

3.1. Prestress force identification from measured displacements

Expressing the measured displacements yðxm; tÞ at a point xm from the left support in modal
coordinates

yðxm; tÞ ¼
XN

i¼1

Y iðxÞqiðtÞ; ðm ¼ 1; 2; . . . ;NmÞ (6a)

or in matrix form as

fygNm�1 ¼ ½Y �Nm�NfqgN�1, (6b)

where fygNm�1 is the vector of displacements at Nm measurement locations, and N is the number
of measured modes in the responses. The vector of generalized coordinates can be written using
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the least-squares pseudo-inverse

fqgN�1 ¼ ð½Y �TN�Nm
½Y �Nm�NÞ

�1
½Y �TN�Nm

fygNm�1. (7)

The modal velocity and acceleration of the beam responses can be obtained from Eq. (7) by
numerical methods. However, when the measurements are polluted by noise, the use of central
difference method to calculate the modal velocity and acceleration will lead to large computation
error. Therefore the generalized orthogonal polynomial [5] is used to model the measured
displacement as

yðxj; tÞ ¼
XNf

i

aiGiðtÞ, (8)

where yðxj; tÞ is the approximated displacement at the jth measuring point. Nf is the order of the
orthogonal polynomial function. The velocity and acceleration are then approximated by the first
and second derivatives of the orthogonal polynomial. It is to note that the order of the orthogonal
polynomial function Nf has large effects on the accuracy of velocity and acceleration
approximated by the first and second derivatives of the orthogonal polynomial. Study in the
present paper found that Nf ¼ 20 is the optimal order such that the velocity and acceleration can
be obtained accurately.
Substituting Eq. (8) into Eq. (6) and writing in matrix form, we have,

fygNm�1 ¼ ½A�Nm�Nf
½G�Nf �1

,

f _ygNm�1 ¼ ½A�Nm�Nf
½ _G�Nf �1

,

f €ygNm�1 ¼ ½A�Nm�Nf
½ €G�Nf �1

, (9)

where ½A�Nm�Nf
, ½G�Nf �1

, ½ _G�Nf �1
, ½ €G�Nf �1

are the coefficient matrix of the polynomial, the
orthogonal polynomial matrix, the first and second derivatives of the orthogonal polynomial
variable matrix, respectively. The coefficient matrix ½A� can be obtained by the least-squares
method from Eq. (9)

½A�Nm�Nf
¼ fygNm�1½G�T1�Nf

ð½G�Nf �1
½G�T1�Nf

Þ
�1. (10)

Substituting matrix ½A� into Eq. (9), we can get f _yg and f €yg. And substituting fyg; f _yg; f €yg and the
derivatives of ½G� into Eq. (7), we can obtain the modal displacement q, modal velocity _q and
modal acceleration €q. Substituting further q, _q and €q into Eq. (5), and after transformation, we
have

½K 0�fQðtÞg ¼ ½I �f €QðtÞg þ ½C�f _QðtÞg þ ½K�fQðtÞg � fF ðtÞg. (11)

Matrix ½K 0� contains the prestress force T which is assumed constant throughout the length of the
beam. Matrix ½C� contains the modal damping xi and modal frequency oi which are assumed
unchanged, and matrix ½K � contains the system parameters of the beam which are also assumed
unchanged. The inverse problem is to solve Eq. (11) in time domain to get the prestress force T.
Rewriting Eq. (11)

fBgn�1T ¼ fF̄gn�1, (12)
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where

fBg ¼

p
L


 �2 1
rA

0 0 0

0
2p
L

� �2
1

rA
0 0

0 0 . .
.

0

0 0 0
np
L


 �2 1
rA

666666666666664

777777777777775
n�n

q1ðtÞ

q2ðtÞ

..

.

qnðtÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

n�1

and vector ½F̄ � contains all the terms on the right-hand side of Eq. (11). From Eq. (12) one can see,
the equation number is n but the unknown is only one, T, so the prestress force T can be
calculated directly by the simple least-squares method

T ¼ ðfBgTfBgÞ�1fBgTfF̄g. (13)

In order to have bounds on the ill-conditioned solution, the damped least-squares method
(DLS) is used and singular value decomposition is used in the pseudo-inverse computation. Eq.
(13) is written in the following form using the DLS method:

T ¼ ðfBgTfBg þ lIÞ�1fBgTfF̄g, (14)

where l is the non-negative damping coefficient governing the contribution of the least-squares
error in the solution. The solution of Eq. (14) is equivalent to minimizing the function

JðT ; lÞ ¼ minðkfBgT � fF̄gk2 þ lkTk2Þ (15)

with the second term in Eq. (15) providing bounds to the solution.

3.2. Identification from measured strains

The strain at the bottom of the beam at a point xm from the left support can be expressed
similar to Eq. (6) in terms of the generalized coordinates as

�ðxm; tÞ ¼ �
h0

2

XN

i¼1

Y 00ðxmÞqiðtÞ ðm ¼ 1; 2; . . . ;NmÞ, (16)

where h0 is the depth of the beam. Eq. (16) can be written as

f�gNm�1 ¼ ½Y 00�Nm�NfqgN�1, (17)

where f�gNm�1 is the vector of strains at Nm measurement locations. Again the strain at the jth
measuring point can be approximated by the orthogonal function GðtÞ as

�ðxj; tÞ ¼
XNf

i

aiGiðtÞ. (18)

The rest of the computation in the identification is similar to that for identification from measured
displacements mentioned above.
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3.3. Identification of both prestress force and the flexural rigidity of the beam

Other variables in the system should also be included in the identification for a real application.
Since the dimensions of the beam can be measured accurately, and the modal damping can be
estimated from a preliminary spectral analysis before the identification, the only variable with
uncertainty is the flexural rigidity EI0 of the beam section. If we have a uniform uncracked beam,
we have both T and EI0 as the two variables in the identification. Rewriting Eq. (11) as

T

p
L


 �2 1
rA

0 0 0

0
2p
L

� �2
1

rA
0 0

0 0 . .
.

0

0 0 0
np
L


 �2 1
rA

6666666666666664

7777777777777775
n�n

0
BBBBBBBBBBBBB@

�EI0

p
L


 �4 1
rA

0 0 0

0
2p
L

� �4
1

rA
0 0

0 0 . .
.

0

0 0 0
np
L


 �4 1
rA

6666666666666664

7777777777777775
n�n

1
CCCCCCCCCCCCCA

q1ðtÞ

q2ðtÞ

..

.

qnðtÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

1 0 0 0

0 1 0 0

0 0 . .
.

0

0 0 0 1

666666664

777777775
n�n

€q1ðtÞ

€q2ðtÞ

..

.

€qnðtÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

n�1

þ

2x1o1 0 0 0

0 2x2o2 0 0

0 0 . .
.

0

0 0 0 2xnon

6666666664

7777777775
n�n

_q1ðtÞ

_q2ðtÞ

..

.

_qnðtÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

n�1

�

f 1ðtÞ

f 2ðtÞ

..

.

f nðtÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

n�1

. ð19Þ

The inverse problem is to solve Eq. (19) in time domain at each time step to get the prestress
force T and the flexural rigidity EI0. Rewriting Eq. (19) in a simple form

½B�fX g ¼ fF̄gn�1, (20)
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where

½B� ¼
BT 0

0 BEI

" #
; fXg ¼

T

EI0

( )
,

fBTg ¼

p
L


 �2 1
rA

0 0 0

0
2p
L

� �2
1

rA
0 0

0 0 . .
.

0

0 0 0
np
L


 �2 1
rA

666666666666664

777777777777775
n�n

q1ðtÞ

q2ðtÞ

..

.

qnðtÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

n�1

,

fBEI g ¼

p
L


 �4 1
rA

0 0 0

0
2p
L

� �4
1

rA
0 0

0 0 . .
.

0

0 0 0
np
L


 �4 1
rA

666666666666664

777777777777775
n�n

q1ðtÞ

q2ðtÞ

..

.

qnðtÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

n�1

.

Again the prestress force T and the flexural rigidity EI0 can be calculated directly by the simple
least-squares method

fX g ¼ ð B½ �T½B�Þ�1½B�TfF̄g (21)

or in the following form using the DLS method.

fX g ¼ ð½B�T½B� þ l½I �Þ�1½B�TfF̄g. (22)

Both the prestress force and the flexural rigidity of the beam are identified at each time step. The
dimension of the variable fX g is 2nt � 1, where nt is the total time steps. The variable vector ½X � is
defined with these two variables appearing in alternative order, i.e. the prestress force takes up the
odd terms of the vector ½X � while the flexural rigidity takes up the even terms.
4. Simulation and results

4.1. The prestress beam

A 30m long simply supported Euler–Bernoulli beam with an axial prestress force of 0:3T cr ¼

8:2247� 106 N is studied. The first six natural frequencies of the beam are: 1.03, 4.75, 10.11, 19.56,
30.67 and 44.25Hz. The damping ratios for these six modes are all equal to 0.02. The prestress
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force is constant along the beam. The external exciting force is

f ðtÞ ¼ 12000½1þ 0:1 sinð10ptÞ þ 0:05 sinð40ptÞ�N

and it is applied at 7m from the left support to excite the lower modes. The parameters of the
beam are: rA ¼ 5:0� 103 kg=m, E ¼ 5� 1010 N=m2, L ¼ 30m, b ¼ 0:6m, and h0 ¼ 1:0m. The
flexural rigidity EI0 of the beam is calculated as 2:5� 109 Nm2.

4.2. Effect of prestress on the modal frequency and responses

Table 1 shows the modal frequencies of the first five modes of the above beam when T ¼ 0:1T cr,
T ¼ 0:3T cr and T ¼ 0:5T cr, respectively, and the lower modal frequencies are seen more affected
by the axial compression than the higher modes. The frequency of the beam decreases with an
increase in the axial compression and vice versa. This is due to the ‘‘compression softening’’ effect
[6] from the prestress force.
Figs. 2 and 3 show the effect of the prestress force on the responses of the beam when T ¼

0:1T cr and T ¼ 0:3Tcr, respectively when only three modes are included. It is seen that the effect
of prestress is most significant with the displacement responses and the acceleration responses are
least affected, and such effect increases with larger prestress in the beam.

4.3. Prestress force identification

White noise is added to the calculated displacements and strains to simulate the polluted
measurements as follows:

y ¼ ycalculated þ Ep Noise varðycalculatedÞ,

� ¼ �calculated þ Ep Noise varð�calculatedÞ,

where y and � are the vectors of polluted displacements and strains respectively, Ep is the noise
level, Noise is a standard normal distribution vector with zero mean and unit standard deviation,
varð�Þ is the variance of the time history, ycalculated and �calculated are the vectors of calculated
displacements and strains. Five percent and 10% noise levels are included in the study in this
paper.
The above beam with T ¼ 0:3T cr axial force is studied. The first three modes are used in the

calculation. Measured displacements at 1
4
L; 1

2
L and 3

4
L are used in the identification. The sampling
Table 1

Modal frequencies corresponding to different prestress force

Prestress force Frequency (Hz)

1st 2nd 3rd 4th 5th

T ¼ 0 1.23 4.94 11.11 19.75 30.86

T ¼ 0:1T cr 1.17 4.88 11.05 19.69 30.80

T ¼ 0:3T cr 1.03 4.75 10.92 19.56 30.67

T ¼ 0:5T cr 0.87 4.62 10.80 19.44 30.55
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frequency is 1000Hz, which is larger than 20 times the highest frequency of interest at 44.25Hz.
The beam is assumed at rest initially.
Fig. 4 shows the identified results from measured strains with 5% and 10% noise with the

corresponding optimal regularization parameter equals to 3:4� 10�6 and 6:1� 10�6, respectively.
There is only a slight difference in the time histories of the identified prestress from both cases.
This is because the measurements have been approximated with 20 terms of the orthogonal
functions and the velocities and accelerations are subsequently obtained by directly differentiating
the functions. This shows that the orthogonal function approach is effective in eliminating the
noise in the measured data.
Large responses are found close to the start and end of the time histories while those in the middle

halve vary closely around the true value. This is because the response is a discontinuous function of
time at these two time instances. The second term in Eq. (22) provides bounds to the solution. When
the regularization parameter l approaches zero, the estimated vector fF̄g approaches the solution
obtained from the least-squares method. In practice, the expected value of l is not known, and the
error between the true and the estimated forces is minimized [7] for a specific range of l.

4.4. Identification using impulsive excitation

An impulsive force is also used to identify the prestress force, which acts on the beam between
t ¼ 0:05 s to 0.15 s. The magnitude of the force is 9500N simulating the impact excitation
produced by a 125 kg weight free falling for 1m on the beam. The weight is assumed bounced off
the beam after impact, and the effect of the falling mass after the impact is ignored. The force is
applied at 7m from the left support and it can be expressed in the following form:

f ðtÞ ¼
190000ðt � 0:05ÞN ð0:05ptp0:1Þ;
190000ð0:15� tÞN ð0:1ptp0:15Þ:

(
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A Fourier series is used to model the force as

f ðtÞ ¼ a0 þ
X1
k¼1

ak cos
2kpt

T
þ
X1
k¼1

bk sin
2kpt

T
,

where

a0 ¼
1

T

Z T

0

f ðtÞdt,

ak ¼
2

T

Z T

0

f ðtÞ cos
2kpt

T
dt and bk ¼

2

T

Z T

0

f ðtÞ sin
2kpt

T
dt.

Forty terms in the series are used to include the higher frequencies with the impulsive force. The
sampling frequency is 1000Hz, and the first three modes and three displacement measurements
evenly distributed along the beam are used in the identification. Five percent noise is included in
the identification. Fig. 5 shows that the identified prestress force obtained from using an optimal
regularization parameter of 4:1� 10�6 and it is found fluctuating closely around the true value.

4.5. Identification of both prestress force and the flexural rigidity of the beam

The same system as for the last study is used here, and the flexural rigidity EI0 of the beam is
2:5� 109 Nm2. The sampling frequency is 1000Hz, and the first three modes and three evenly
distributed displacement measurements are used in the identification. Also 5% noise is included in
the identification. All other parameters remain unchanged.
Fig. 6 shows that both the identified prestress force and the flexural stiffness are fluctuating

around the true values. The corresponding optimal regularization parameter is 2:7� 10�6. This
shows further the effectiveness of the proposed method with multiple parameters identification.
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Fig. 5. Prestress force identified from impulsive force (—, true; - - - -, identified).
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Fig. 6. Identification of prestress force and flexural rigidity (—, true; - - - -, identified).
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4.6. Sensitivity of the proposed method to prestress force magnitude

In most cases of construction with prestress, the prestress force in a beam component is
relatively small. A study is therefore made to study the errors involved in the identification of
different magnitude of prestress force with different noise levels. The same beam and excitation
for the last study is used. Five prestress levels and three noise levels are studied and the summation
of error of the identified force according to Eq. (23) is shown in Table 2. The time histories of the
identified prestress force which are 0:01Tcr; 0:1T cr and 0:3T cr under 10% noise level are shown in
Fig. 7 obtained from using an optimal regularization parameter of 6:1� 10�6.

error ¼
kTpid � Tptruek

kTptruek
� 100%. (23)

The noise level is not important to the identification except for the case of a small prestress force of
0:01T cr. However detail inspection of Fig. 7 shows that all the curves are fluctuating around their
corresponding true values. The sum of squares error or the variance of the identified forces is of the
same order for all the cases studied indicating same order of accuracy in all the identifications. This
also shows that the proposed method is insensitive to the level of prestress force. The large percentage
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Fig. 7. Identification of different magnitude of prestress force (—, true; - - - -, T ¼ 0:3T cr; –.–.–., T ¼ 0:1T cr; . . .,
T ¼ 0:01T cr).

Table 2

Error percentage (%) and sum of squares error in the identified prestress force for different noise level

Prestress force 1% noise 5% noise 10% noise

0:01T cr 173=ð7:77� 107Þ 218:3=ð1:1� 108Þ 237:88=ð1:37� 108Þ
0:05T cr 75:53=ð1:79� 108Þ 81:46=ð2:16� 108Þ 86:46ðð2:53� 108ÞÞ
0:1T cr 46:37=ð2:19� 108Þ 48:33=ð2:48� 108Þ 50:29=ð2:8� 108Þ
0:3T cr 31:02ð3:03� 108Þ 31:86ð3:30� 108Þ 32:8ð3:66� 108Þ
0:5T cr 21:6=ð3:43� 108Þ 21:62=ð3:48� 108Þ 22:91=ð3:56� 108Þ

Note: ð�Þ denotes the sum of squares error.
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error for a small prestress force arises from a small denominator as calculated from Eq. (23).
Furthermore, over 90% of the force time history in the middle give close to true values of the force
with smaller fluctuations indicating the good accuracy of the proposed method.
5. Conclusion

A new method to identify the prestress force in a prestressed concrete beam is proposed. The
prestress force in a beam has been identified accurately with or without the flexural rigidity of the
beam in the identification. The noise effect is improved using the orthogonal polynomial function.
Both the sinusoidal and impulsive excitation could give good results from the lower three
measured modes and strain or displacement obtained from only three measuring points. This
work indicates that indirect measurement of the prestress force in a beam is feasible.
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